Time: 3 hours

Max score: 100

Answer **any 5** questions.

- (a) Define constructible real numbers.
 (b) Show that if a is a constructible real number, then it is algebraic, and its degree over Q is a power of 2.
 (c) Show that it is impossible to construct a regular 9-gon with a compass and straightedge. (Hint: Use part (b)). (2+8+10)
- 2. Suppose that \mathbb{F} is a finite field of characteristic p.
 - (a) Show that every element, $\alpha \in \mathbb{F}$ is of the form b^p for some $b \in \mathbb{F}$.
 - (b) Prove that a polynomial over \mathbb{F} is separable if and only if it is the product of distinct irreducible polynomials over \mathbb{F} . (8+12)
- 3. (a) Prove the existence and uniqueness of a field of order p^n for any prime p and any positive integer n.

(b) If we denote the field in part (a) as \mathbb{F}_{p^n} , show that the extension $\mathbb{F}_{p^n}/\mathbb{F}$ is Galois. Find the Galois group of $\mathbb{F}_{p^n}/\mathbb{F}$. (10+10)

- 4. Let K/F be a field extension with $char(F) = p, p \neq 0$. Let α be a root in K of an irreducible polynomial $f(x) = x^p x a$ over $F, a \neq 0$.
 - (a) Prove that $\alpha + 1$ is also a root of f(x).
 - (b) Show that f(x) is separable over F.
 - (c) Prove that the Galois group of f(x) over F is cyclic of order p. (2+6+12)
- 5. (a) State the fundamental theorem of Galois theory. (b) Show that the Galois group of $x^5 - 4x - 1$ over \mathbb{Q} is S_5 . (8+12)
- 6. Prove that the Galois group of $x^7 + 7x^4 + 14x + 3$ is the alternating group A_7 . (Hint: Use Dedekind's theorem on Galois groups of polynomials over \mathbb{Q}). (20)